
CS4501
Robotics for Soft Eng

Motion Planning

Sense Control Act

Physical
World

Perception Planning Motion
class

Motion Problem
● Given

○ World Space W

○ Obstacle Regions O

○ Robot State R

○ Starting and Ending Configurations qs, qg

● Find a path that modifies R so that
○ From qs to qg

○ While staying in W

○ Without hitting any obstacle O

○ [other constraints]

Motion Planning Problem

qs

qg

Free

space

Obstacle

O

b
s
t
a
c
l
e

Free path

R

World

Motion Planning Families
● Reactive

● Model-based
Work under different

assumptions about sensor
types and world models

available

Motion Planning Families
● Reactive

○ Online

○ Fast, non-optimal

Bug Algorithms

qs

qg

Robot
● Is modeled as a bounded point

Under-approximation of robot constraints induced by physical structure

Over-approximation of robot capabilities in terms of directionality

Bug Algorithms

qs

qg

Robot
● Is modeled as a bounded point

● Can sense its location precisely

● Can sense contact with obstacles

● Can compute direction towards goal and distance between two points

● Does not know location of obstacles in advanced

Bug Algorithm 1

qs

qg

Repeat until Robot-pose = Goal

Bug Algorithm 1

qs

qg

Repeat until Robot-pose = Goal
Head towards goal

Path Planning Simplified: Bug Algorithm 1

qs

qg

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall to the left until heading towards goal is possible

Bug Algorithm 1

qs

qg

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall to the left until heading towards goal is possible

Bug Algorithm 1

qs

qg

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall to the left until heading towards goal is possible

Bug Algorithm 1

qs

qg

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall to the left until heading towards goal is possible

Bug Algorithm 1

qs

qg

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall to the left until heading towards goal is possible

Bug Algorithm 1

qs

qg

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall to the left until heading towards goal is possible

Bug Algorithm 1+

qs

qg

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall completely
Identify closest boundary point to Goal
Return to this point by shortest path along obstacle boundary

Bug Algorithm 1+

qs

qg

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall completely
Identify closest boundary point to Goal
Return to this point by shortest path along obstacle boundary

Bug Algorithm 1+ Exercise

qs

qg

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall completely
Identify closest boundary point to Goal
Return to this point by shortest path along obstacle boundary

Bug Algorithm 1+ Exercise

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall completely
Identify closest boundary point to Goal
Return to this point by shortest path along obstacle boundary

qs

qg

Bug Algorithms 1++

qs

qg

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall completely
Identify closest boundary point to Goal, if direction towards the Goal hits obstacle break
Return to this point by shortest path along obstacle boundary

Bug Algorithms 1++

qs

qg

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Navigate next to wall completely
Identify closest boundary point to Goal, if direction towards the Goal hits obstacle break
Return to this point by shortest path along obstacle boundary

Bug Algorithm 1++
Repeat until Robot-pose = Goal

Head towards goal
If obstacle detected then

Navigate next to wall completely
Identify closest boundary point to Goal, if direction towards the Goal hits obstacle break
Return to this point by shortest path along obstacle boundary

Distance T traveled by Bug-1 (based on D distance between qs and qg)
● Lower bound:
● Upper bound:
● Average:

qs

qg

Bug Algorithm 1++
Repeat until Robot-pose = Goal

Head towards goal
If obstacle detected then

Navigate next to wall completely
Identify closest boundary point to Goal, if direction towards the Goal hits obstacle break
Return to this point by shortest path along obstacle boundary

Distance T traveled by Bug-1 (based on D distance between qs and qg)
● Lower bound: T >= D
● Upper Bound: \inf
● Average: T <= D + 1.5 ∑(perimeter polygons)

qs

qg

Bug Algorithm 2

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Repeat
Navigate next to wall (start left)

Until Goal Line crossed at Leave point closer to goal on the same side than before

qs

qg

Leave point

Goal Line

Bug Algorithm 2

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Repeat
Navigate next to wall (start left)

Until Goal Line crossed at Leave point closer to goal on the same side than before

qs

qg

Leave point

Goal Line

Bug Algorithm 2

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Repeat
Navigate next to wall (start left)

Until Goal Line crossed at Leave point closer to goal on the same side than before

qs

qg

Bug Algorithm 2 Exercise

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Repeat
Navigate next to wall (start left)

Until Goal Line crossed at Leave point closer to goal on the same side than before

qs

qg

qs

qg

Path Planning Simplified: Bug Algorithm 2 Exercise

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Repeat
Navigate next to wall (start left)

Until Goal Line crossed at Leave point closer to goal on the same side than before

qs

qg

qs

qg

Bug Algorithm 2

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Repeat
Navigate next to wall (start left)

Until Goal Line crossed at Leave point closer to goal on the same side than before

Distance T traveled by Bug-2 (based on D distance between qs and qg)
● Lower bound:
● Upper Bound:
● Average:

Bug Algorithm 2

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Repeat
Navigate next to wall (start left)

Until Goal Line crossed at Leave point closer to goal on the same side than before

Distance T traveled by Bug-2 (based on D distance between qs and qg)
● Lower bound: T >= D
● Upper bound: \inf
● Average: T <= D + 0.5 ∑(Perimeters of obstacles intersected by goal line * number of

times lines intersects each obstacle)

 Bug Algorithm 2 Exercise

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Repeat
Navigate next to wall (start left)

Until Goal Line crossed at Leave point closer to goal on the same side than before

qgqs

 Bug Algorithm 2 Exercise

Repeat until Robot-pose = Goal
Head towards goal
If obstacle detected then

Repeat
Navigate next to wall (to the left)

Until Goal Line crossed at Leave point closer to goal on the same side than before

qgqs

Relaxing Bug Algorithm assumptions

qs

qg

Robot
○ Is modeled as a bounded point

○ Can sense its location precisely

○ Can sense contact with obstacles - can sense more…

○ Can compute direction towards goal and distance between two points

○ Does not know location of obstacles, has more memory

Motion Problem
● Reactive

○ Bug

○ Dynamic windows

● Model-based

Dynamic Windows

qg
Target Velocity vector to reach G fast

Dynamic Windows

For each time slice t
Enumerate allowed velocities in

Dynamic Windows

For each time slice t
Enumerate allowed velocities in

Robot
Physical Model

Racing drone

Dynamic Windows
For each time slice t

For each v in [curr.v - maxacc(t), curr.v + maxacc(t)]

If (v < maxV and v > minV)
validVelocities.add(v)

For each ω in [curr.ω - maxacc(t), curr.ω + maxacc.(t)]
If (ω < maxω and ω > minω)

validAngVelocities.add(ω)

Dynamic Windows
For each v in validVelocities

For each ω in validAngVelocities
dist2Obstacle = computeDist(v, ω, laserScan())

Dynamic Windows
For each v in validVelocities

For each ω in validAngVelocities
dist2Obstacle = computeDist(v, ω, laserScan())
clearance = dist2Obstacle - breakDist(v,ω)
If (clearance > 0)

// non-colliding velocities

Dynamic Windows
For each v in validVelocities

For each ω in validAngVelocities
dist2Obstacle = computeDist(v, ω, laserScan())
clearance = dist2Obstacle - breakDist(v,ω)
If (clearance > 0)

// non-colliding velocities

Dynamic Windows
For each v in validVelocities

For each ω in validAngVelocities
dist2Obstacle = computeDist(v, ω, laserScan())

 clearance = dist2Obstacle - breakDist(v)
If (clearance > 0)

// non-colliding velocities
offHeading = headingDiff(robot.pose, qg, v, ω)

qg

Dynamic Windows
For each v in validVelocities

For each ω in validAngVelocities
dist2Obstacle = computeDist(v, ω, laserScan())

 clearance = dist2Obstacle - breakDist(v)
If (clearance > 0)

// non-colliding velocities
offHeading = headingDiff(robot.pose, qg, v, ω)

qg

Dynamic Windows
For each v in validVelocities

For each ω in validAngVelocities
dist2Obstacle = computeDist(v, ω, laserScan())

 clearance = dist2Obstacle - breakDist(v)
If (clearance > 0)

// non-colliding velocities
offHeading = headingDiff(robot.pose, qg, v, ω)

offVel = abs(targetVelocity - v))

Target Velocity qg

For each v in validVelocities
For each ω in validAngVelocities

dist2Obstacle = computeDist(v, ω, laserScan())
 clearance = dist2Obstacle - breakDist(v)

If (clearance > 0)

offHeading = headingDiff(robot.pose, qg, v, ω)

offVel = abs(targetVelocity - v))

output = ka*clearance + kb* offHeading + kc*offVel

Dynamic Windows

Target Velocity qg

Dynamic Windows
For each v in validVelocities

For each ω in validAngVelocities
dist2Obstacle = computeDist(v, ω, laserScan())

 clearance = dist2Obstacle - breakDist(v)
If (clearance > 0)

offHeading = headingDiff(robot.pose, qg, v, ω)
offVel = abs(targetVelocity - v))
output = ka*clearance + kb* offHeading + kc*offVel
if (output > chosen)

 chosenV = v
 chosenW = ω
 chosen = output

robot.Speed(chosenV, chosenW)

qg

For each v in validVelocities
For each ω in validAngVelocities

dist2Obstacle = computeDist(v, ω, laserScan())
 clearance = dist2Obstacle - breakDist(v)

If (clearance > 0)
offHeading = headingDiff(robot.pose, qg, v, ω)
offvel = abs(targetVelocity - v))
output = ka*clearance + kb* offHeading + kc*offVel
if (output > chosen)

 chosenV = v
 chosenW = ω
 chosen = output

robot.Speed(chosenV, chosenW)

Dynamic Windows

qg

Dynamic Windows

● Velocity planner (clearance, heading, velocity)

● Considers Robot’s Dynamics for valid velocities

Motion Planning Families
● Reactive

● Model-based

Path Planning with Models
● Reactive

● Model-based
○ Predictive model of robot actions in known world

○ Build simplified representation

○ Search for solution in world representation

Path Planning: Visibility Methods

qs

qg

Assumptions
● Robot modeled as a bounded point
● Can sense its location precisely
● Can compute direction towards goal and distance between two points
● Knows location of obstacles in advanced - polygonal obstacles

Path Planning: Visibility Methods

qs

qg

● Assumption: known polygonal obstacles

Path Planning: Visibility Methods

qs

qg

● Assumption: known polygonal obstacles

● Connect all vertices without obstacles in between

Path Planning: Visibility Methods

qs

qg

● Assumption: known polygonal obstacles

● Connect all vertices without obstacles in between

● Graph search!

Path Planning: Visibility Methods

qs

qg

● Assumption: known polygonal obstacles

● Connect all vertices without obstacles in between

● Graph search algorithm

Path Planning: Visibility Methods

qs

qg

When does it struggle?

Path Planning with Models
● Reactive

● Model-based
○ Visibility

○ Grid

Path Planning: Grid Methods

● Discretization of space - resolution

qs

qg

Path Planning: Grid Methods

● Discretization of space

● Occupancy checker - probability

qs

qg

Path Planning: Grid Methods

● Discretization of space

● Occupancy checker - probability

qs

qg

Path Planning: Grid Methods

● Discretization of space

● Occupancy checker

● Graph search algorithm on free cells

qs

qg

Path Planning: Grid Methods

● Discretization of space

● Occupancy checker

● Graph search algorithm on free cells

qs

qg

● Dependent on cell dimensions

● Subject to shape of objects

Path Planning: Grid Methods with Refinement

● Discretization of space

● Occupancy checker

● Graph search algorithm on free cells

qs

qg

● Dependent on cell dimensions

● Subject to shape of objects

Path Planning with Models
● Reactive

● Model-based
○ Visibility

○ Grid

○ Probabilistic

Path Planning: Probabilistic Roadmap

qs

qg

● Random sample of points in space

Path Planning: Probabilistic Roadmap

qs

qg

● Random sample of points in space

● Drop samples over obstacles

Path Planning: Probabilistic Roadmap

qs

qg

● Random sample of points in space

● Drop samples over obstacles

● Connect samples to k-nearest neighbors

Path Planning: Probabilistic Roadmap

qs

qg

● Random sample of points in space

● Drop samples over obstacles

● Connect samples to k-nearest neighbors

● Sample more points until qs and qg are connected

Path Planning: Probabilistic Roadmap

qs

qg

● Random sample of points in space

● Drop samples over obstacles

● Connect samples to k-nearest neighbors

● Sample more points until qs and qg are connected

Path Planning: Probabilistic Roadmap

qs

qg

● Random sample of points in space

● Drop samples over obstacles

● Connect samples to k-nearest neighbors

● Sample more points until qs and qg are connected

Path Planning: Probabilistic Roadmap

qs

qg

The path is non-optimal, how do you optimize it?

Searching in a Graph
● Generic

○ BFS (Breath First)

○ DFS (Depth First)

● Informed
○ “Heuristic” to guide the search

Take Away
● Families of approaches to navigate world

○ Reactive

■ Local area and fast response

○ Model-based

■ Big picture and long paths

■ Build and searching graphs

